ОТЗЫВ

официального оппонента к.т.н., Денисова Д. В. на диссертацию Никулиной Ю. С.

«Применение радиолинз в задачах полунатурного моделирования объектов, перемещающихся по угловым координатам», представленную на соискание ученой степени кандидата технических наук по специальности 05.12.04 — «Радиотехника, в том числе системы и устройства телевидения»

Актуальность темы

Тема диссертационного исследования является актуальной и посвящена обоснованию возможности использования коллиматорных радиолинз для задач полунатурного моделирования объектов, перемещающихся по угловым координатам. Использование коллиматоров позволяет снизить габариты безэховых камер. В работе сформулированы условия, необходимые для синтеза физически реализуемой бифокальной радиолинзы, выполненной из газонаполненного материала, разработан алгоритм расчета профилей освещенной и теневой поверхностей бифокальной радиолинзы.

Структура и содержание работы

Диссертационная работа Никулиной Ю. С. включает в себя введение, четыре раздела, заключение, список сокращений, список литературы (180 наименований) и два приложения. Текст изложен на 148 страницах, содержит 34 рисунка, 15 таблиц.

В первом разделе приведен обзор проведенных исследований по теме работы, сформулированы цель и задачи. Проанализированы свойства диэлектриков с точки зрения их пригодности для изготовления коллиматоров. Рассмотрены различные геометрии радиолинз, описаны методы их синтеза. Приведены критерии качества фокусировки радиолинз, пороговые значения величины искажений суммарной и разностной диаграмм.

Во втором разделе рассмотрены одноповерхностные линзовые коллиматоры. Получены выражения, при помощи которых рассчитаны амплитудные и фазовые распределения при расфокусировках радиолинзы. На их основе выполнена оценка допустимых диапазонов перемещения облучателя с использованием двух критериев качества фокусировки. Показано, что определение качества фокусировки по величине искажений фазового фронта приводит к зауженному диапазону углов сканирования.

В третьем разделе разработан метод расчета поверхностей бифокальных радиолинз. Сформулированы условия, необходимые для синтеза физически реализуемого коллиматора. Выполнена проверка достоверности предложенного метода.

В четвертом разделе рассмотрены вопросы практического использования полученных результатов, выполнена их экспериментальная апробация. Предложена и реализована последовательность действий для изготовления радиолинзы из газонаполненных материалов. Проведены измерения электродинамических характеристик изготовленной радиолинзы с помощью сканера электромагнитного поля. Измерения экспериментально подтверждают достоверность полученных результатов.

В приложении содержатся акты о внедрении результатов диссертационной работы в АО «НИИ «Октава» и НГТУ, а также патент на «Способ определения поверхности диэлектрической бифокальной линзовой антенны».

Таким образом, **научные положения**, **выводы**, **результаты и рекомендации**, сформулированные в диссертационной работе Никулиной Ю. С., **являются обоснованными**.

Новизна работы. Автором сформулированы условия, при выполнении которых возможен синтез физически реализуемого бифокального линзового коллиматора. Предложен способ определения коэффициентов степенных полиномов, аппроксимирующих поверхности бифокальной радиолинзы.

Достоверность результатов. Автор использует достоверные электродинамические методы расчета радиолинз, которые показывают допустимую степень сходимости результатов расчетов с результатами экспериментальных измерений.

По теме диссертации соискателем опубликовано 26 печатных работ, 5 из них в журналах из перечня ВАК. Имеется 2 публикации в изданиях, входящих в международные библиографические системы Scopus, Web of Science. Получен 1 патент РФ на изобретение. Основные результаты работы были доложены на пятнадцати конференциях. Внедрение результатов диссертационной работы подтверждено двумя актами о внедрении.

Оформление диссертации соответствует требованиям ВАК РФ. Автореферат диссертации позволяет оценить основные результаты работы, их новизну и практическую значимость, а также личный вклад автора.

Замечания по работе

- 1. Расчеты выполнены для трехсантиметрового диапазона длин волн. Нет пояснения как изменится фазовое и амплитудное распределения и диаграмма направленности при изменении длины волны.
- 2. В выводах к разделу 1 п.1 указано, что «при использовании материалов с низким значением диэлектрической проницаемости повышается допуск на точность изготовления радиолинз». Однако, практика производства линз радиодиапазона говорит об обратном. В частности, низкими значениями проницаемости становится сложно манипулировать и выдерживать необходимую точность градиентных переходов.

Заключение

Диссертационная работа Никулиной Ю. С. на тему «Применение радиолинз в задачах полунатурного моделирования объектов, перемещающихся по угловым координатам» представляет собой законченную научно-квалификационную работу, в которой содержится решение задачи, имеющей существенное значение для радиотехники. А именно: для исследования характеристик радиотехнических устройств, функционирующих в условиях воздействия отражений от распределенных объектов, без проведения натурных экспериментов. Работа Никулиной Ю. С. удовлетворяет требованиям

положений ВАК РФ, предъявляемым к кандидатским диссертациям. Автор заслуживает присуждения ученой степени кандидата технических наук по специальности "Радиотехника, в том числе системы и устройства телевидения" (05.12.04).

информационных доцент кафедры технологий, **Уральский** систем технический институт связи информатики (филиал) федерального бюджетного государственного образовательного учреждения высшего образования «Сибирский государственный университет телекоммуникаций и информатики» в г. Екатеринбурге, к.т.н.

Д. В. Денисов

Личную подпись оппонента заверяю

mobe A.B

Сведения об организации:

ФГБОУ ВО Уральский технический институт связи и информатики (филиал) Сибирского государственного университета телекоммуникаций и информатики

620109, г. Екатеринбург, ул. Репина 15

http://www.uisi.ru/

adm@uisi.ru

Conjubor oznarodnena 11.06.2021 Heinf Horgrana to.C