Веселов Сергей Викторович

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ТВЕРДОСПЛАВНЫХ ПОКРЫТИЙ НА УГЛЕРОДИСТЫХ СТАЛЯХ ПРИ ИСПОЛЬЗОВАНИИ ПРОМЕЖУТОЧНЫХ СЛОЕВ

05.02.01 – Материаловедение (в машиностроении)

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Новосибирский государственный технический университет»

Научный руководитель: кандидат технических наук, профессор

Буров Владимир Григорьевич

Официальные оппоненты: доктор технических наук, доцент

Акимов Валерий Викторович

кандидат технических наук, профессор

Бутыгин Виктор Борисович

Ведущая организация: Институт теоретической и прикладной

механики им. С.А. Христиановича СО РАН,

г. Новосибирск

Защита диссертации состоится « 23 » декабря 2009 года в 10^{00} часов на заседании диссертационного совета Д 212.173.13 в Новосибирском государственном техническом университете по адресу: 630092, г. Новосибирск, пр. К. Маркса, 20.

С диссертацией можно ознакомиться в библиотеке Новосибирского государственного технического университета.

Автореферат разослан «23» ноября 2009 г.

Ученый секретарь диссертационного совета кандидат технических наук, доцент

Иванцивский В.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации:

наиболее требований, Одно ИЗ важных предъявляемых конструкционным материалам, связано с обеспечением высокого уровня твердости и износостойкости. Среди большого количества технологических решений, позволяющих повысить твердость и износостойкость поверхностных конструкционных широкое сталей, распространение получили технологии нанесения износостойких покрытий. К наиболее перспективным материалам использования В качестве покрытий ДЛЯ металлокерамические вольфрамокобальтовые твердые сплавы. При большом физических свойств конструкционных вольфрамокобальтовых твердых сплавов сочетание высокой износостойкости покрытия с конструктивной прочностью стали может быть обеспечено формированием развитой зоны, осуществляющей плавный переход физикомеханических свойств от покрытия к основному металлу. Переходная зона может быть создана при использовании технологии жидкофазного спекания вольфрамокобальтовой порошковой смеси на стальной поверхности. Однако высокая реакционная активность карбида вольфрама и железа в процессе формирования твердого сплава приводит к появлению дефектов. Эти дефекты резко снижают свойства формируемой композиции. Применение барьерных слоев между покрытием и основным металлом является тем технологическим приемом, который способен обеспечить сохранность упрочняющей фазы покрытия и, в то же время, обеспечить формирование развитой переходной зоны между покрытием и основным металлом без образования в ней дефектов.

Выявление закономерностей формирования структуры переходного слоя между покрытием и основным металлом в процессе нагрева композиции «твердосплавная порошковая смесь — сталь» актуально с позиций получения обоснованных представлений о процессах формирования градиентных структур. Эти представления имеют большое значение при разработке новых технологий упрочнения поверхностных слоев стальных деталей машин и механизмов твердосплавными покрытиями.

Работа выполнялась в Новосибирском государственном техническом университете в соответствии с планами НИР; подпрограммой «Развитие инфраструктуры научно-технической и инновационной деятельности высшей школы и ее кадрового потенциала» ведомственной научной программы «Развитие научного потенциала высшей школы» 2005 г.; государственным контрактом 02.438.11.7025 на научно-исследовательские работы по теме 2005-РИ-16.0/024/023, выполненным в рамках ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002-2006 г.г.; интеграционным проектом СО РАН «Теоретическое и экспериментальное изучение путей повышения эффективности и экологической безопасности импульсных машин для разрушения горных пород и изменения свойств массива», 2006-2007 г.г.; проектом РФФИ № 07-08-00621 свойств вольфрамокобальтовых «Оптимизация структуры И

методами высокоэнергетического воздействия и предварительной химикотермической обработки основного металла» (2008 г.); проектом № РНП 2.1.2/4751 «Обеспечение прочностных и функциональных свойств многокомпонентных металлокерамических покрытий с наноструктурными составляющими путем управления свойствами жидкой фазы при их формировании», выполняемым в рамках АВЦП "Развитие научного потенциала высшей школы (2009-2010 годы)".

Цель диссертационной работы: повышение конструктивной прочности композиции «твердосплавное покрытие — стальная основа» путем направленного формирования структуры и свойств переходного слоя.

Для достижения поставленной цели решались следующие задачи:

- 1. Выявление температурно-временных характеристик процессов, протекающих при жидкофазном спекании твердосплавной порошковой смеси на стальной поверхности.
- 2. Изучение влияния структуры поверхностного слоя стали, насыщенной азотом, на структуру композиций, полученных жидкофазным спеканием твердосплавных вольфрамокобальтовых порошковых смесей.
- 3. Изучение влияния промежуточного слоя хрома на стальной поверхности на структуру спеченных композиций «покрытие промежуточный слой основной металл».
- 4. Исследование влияния барьерного слоя на основе порошковых смесей «карбид титан никель» и «карбид титана кобальт» на структуру и свойства спеченных композиций «вольфрамокобальтовое покрытие барьерный слой стальная основа».
- 5. Разработка технологических рекомендаций, направленных на создание износостойких твердосплавных покрытий на стальных изделиях.

Научная новизна.

- 1. С использованием экспериментальных данных рентгеноструктурного анализа и растровой электронной микроскопии обоснована принципиальная схема химических процессов взаимодействия компонентов твердосплавной порошковой смеси с материалом стальной основы, происходящих при оплавлении композиции «вольфрамокобальтовая порошковая смесь основной металл». Установлено, что образование сложных карбидов, отличающихся повышенной хрупкостью, является закономерной стадией формирования покрытия, а сохранение сложных карбидов после кристаллизации определяется избытком железа и недостатком углерода в зоне расплава.
- 2. С использованием методов рентгенофазового анализа установлено, что при нагреве порошковой твердосплавной смеси в присутствии железа образование карбидов типа M_{12} С, происходит в диапазоне температур 600...800 °C. Повышение температуры нагрева до 1000 °C приводит к формированию карбида типа M_6 С. Показано, что с целью исключения образования в формируемых покрытиях и промежуточных слоях указанных

карбидов, характеризующихся склонностью к разрушению, необходимо ограничить диффузию железа в твердосплавную вольфрамокобальтовую порошковую смесь.

- 3. Экспериментально обоснованно применение барьерного слоя из порошковой смеси карбида титана и кобальта, позволяющего сформировать эффективную композицию «вольфрамокобальтовое покрытие промежуточный слой стальная основа», обладающую:
 - прочностными свойствами, близкими к основному материалу;
- структурой и свойствами поверхностного слоя, соответствующими металлокерамическим твердым сплавам ($HV \approx 12000 \text{ M}\Pi a$);
- показателями относительной износостойкости при трении о закрепленные частицы абразива, существенно превосходящими аналогичные характеристики основного металла после закалки и низкого отпуска и незначительно уступающими металлокерамическим твердым сплавам;
 - отсутствием хрупких фаз в переходной зоне;
 - прочной связью покрытия с основным металлом.

обеспечивается: Достоверность результатов исследований использованием различных методов структурных исследований согласованностью полученных результатов; соответствием полученных результатов современным представлениям о природе процессов, происходящих формировании композиционных твердосплавных покрытий углеродистых сталях; отсутствием противоречий между выявленными закономерностями и результатами других авторов.

Практическая значимость и реализация результатов работы.

- 1. Полученные экспериментальные данные, характеризующие процессы взаимодействия твердосплавной порошковой смеси со стальной основой, могут быть полезны при исследованиях и разработке новых технологий получения композиционных металлокерамических покрытий на стальной поверхности.
- 2. Разработаны технологические рекомендации, позволяющие осуществлять выбор рациональной технологии нанесения твердосплавного покрытия на сталь, обеспечивающей формирование развитой переходной зоны и исключающей образование в ней хрупких фаз.
- 3. Результаты диссертационной работы используются в учебном процессе на механико-технологическом факультете Новосибирского государственного технического университета при чтении лекций и выполнении лабораторных работ в курсах «Технология производства композиционных и порошковых материалов» и «Технология материалов и покрытий».
- 4. В ходе проведения исследований разработаны рекомендации по выбору оптимальной технологии повышения конструктивной прочности изделий, работающих в условиях износа и динамических нагрузок. Разработанные в работе рекомендации использованы в ОАО НПО «Сибсельмаш» и ОАО «МКК-Саянмрамор».

На защиту выносятся:

- 1. Экспериментальные данные металлографических, микрорентгеноспектральных и рентгеноструктурных исследований процессов, протекающих при жидкофазном спекании порошковой смеси *WC* - *Co* на стальной поверхности.
- 2. Результаты экспериментальных исследований структуры поверхностных слоев, формируемых в процессе оплавления вольфрамокобальтовой твердосплавной порошковой смеси на стальной поверхности, модифицированной азотом.
- 3. Обоснование эффективности применения промежуточного слоя на основе порошковой смеси частиц карбида титана и кобальта при формировании вольфрамокобальтового покрытия, обладающего структурой и свойствами твердого сплава.

Апробация работы. Основные положения и результаты докладывались и обсуждались на научных конференциях молодых ученых Технологии. Инновации» (г. Новосибирск, 2002, Всероссийской научно-технической конференции «Наука. Промышленность. Оборона» (г. Новосибирск, 2003); на 17-й и 19-ой Уральской школе металловедов-термистов «Актуальные проблемы физического металловедения сталей и сплавов» (г. Киров, 2004., г. Екатеринбург, 2008); на XI Международной научно-практической конференции «Современные техника и технологии» (г. Томск, 2005); на 16-ой Международной конференции по синхротронному излучению (г. Новосибирск, 2006); на 4-й и 5-й Всероссийских научно-практических конференциях «Проблемы повышения эффективности металлообработки в промышленности на современном этапе» (г. Новосибирск:, 2006, 2007); на 6-й Всероссийской школе-семинаре «Новые материалы. Создание, структура, свойства» (г. Томск, 2006); на 3-й Международной научно-технической конференции «Современные проблемы машиностроения» (г. Томск, 2006); на 3-ем Международном форуме по стратегическим технологиям IFOST (г. Новосибирск, 2008); на Всероссийской научноконференции «Современные проблемы практической технологии машиностроения» (г. Новосибирск, 2009).

Публикации. По теме диссертационной работы опубликовано 12 научных статей, из них 5 статей в журналах, входящих в перечень изданий, рекомендованных ВАК РФ, 4 – в сборниках научных трудов, 3 – в сборниках трудов Международных и Всероссийских научно-технических конференций.

Объем и структура работы. Диссертационная работа, состоит из введения, пяти разделов, основных результатов и выводов, приложения. Работа изложена на 188 страницах основного текста, включая 96 рисунков, 14 таблиц, библиографический список из 121 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, определена область исследований, изложены основные вопросы, рассмотренные в диссертации.

раздел «Металлокерамические твердые упрочняющие материалы при формировании композиции «твердосплавное покрытие – стальная основа»» посвящен анализу научной литературы, в области задач обеспечения совместимости компонентов в реакционноспособных системах. В разделе подробно рассмотрены процессы, протекающие при жидкофазном спекании твердых сплавов с различным содержанием углерода, так же проанализированы сведения ПО взаимодействию компонентов твердосплавной смеси железом основного металла, наблюдаемому в процессе спекания композиции «твердосплавное покрытие – стальная основа». Установлено, что в процессе формирования на стальной покрытия на основе вольфрамокобальтовой твердосплавной смеси протекает интенсивное взаимодействие компонентов покрытия и основного металла, сопровождаемое образованием хрупких фаз и деградацией упрочняющей фазы.

Анализ литературных данных по проблемам физико-химической и термомеханической совместимости в исследуемых системах дает основание для выбора направлений формирования бездефектных композиций из реакционно-способных материалов с обеспечением плавного перехода свойств от покрытия к основному металлу. Такими направлениями являются: легирование основного материала с целью снижения его химической активности по отношению к компонентам покрытия; создание барьерных слоев, изменяющих характер взаимодействия компонентов системы.

В разделе проанализированы технологии по созданию на стальных изделиях композиционных покрытий с частицами монокарбида вольфрама в качестве упрочняющей фазы. Установлены технологические приемы, позволяющие обеспечить необходимый уровень конструктивной прочности формируемых композиций, а также основные преимущества и недостатки этих технологий.

На основании выводов, сделанных по результатам анализа материалов литературного обзора, сформулированы цель и задачи исследований.

разделе «Материалы И методы экспериментальных исследований» обоснован выбор материалов, методов исследования их механических свойств, использованных при проведении И были экспериментов. В качестве основного металла выбраны распространенные конструкционные стали 20, 45 и 50. При проведении модельных экспериментов для анализа процессов взаимодействия основного металла и компонентов спекаемого покрытия использовали смеси порошков железа и твердого сплава марки ВК6. Материалом для формируемых покрытий служили твердосплавные порошковые смеси ВК6, ВК8, Т15К6.

Предварительная обработка основного металла заключалась: в химикотермическом насыщении поверхностного слоя стальных образцов бором или азотом; в формировании на стальной поверхности барьерного слоя в виде покрытия металлическим хромом; В формировании твердосплавных порошковых смесей «карбид титана – никель» и «карбид титана – кобальт». хрома проводили на сталях 20 и 12Х18Н10Т пленки магнетронного распыления. Насыщение использованием технологии поверхностного слоя стали азотом проводили по технологии газового азотирования. Нанесение порошкообразных промежуточных слоев на основе частиц карбида титана и никеля, либо карбида титана и кобальта, а также формирование слоя твердосплавной порошковой смеси на поверхности образцов осуществляли технологией шликерного литья.

Завершающей стадией изготовления композиций с покрытиями являлся нагрев образцов до температур, обеспечивающих жидкофазное спекание порошковых смесей. В качестве технологии оплавления покрытий применяли: нагрев в вакуумной печи СГВ-2.4.2/15 И2 и нагрев электронным лучом на промышленном ускорителе электронов типа ЭЛВ-6 в Институте ядерной физики СО РАН.

Основной объем исследований процессов взаимодействия компонентов системы «твердосплавное покрытие – основной металл», а также системы «твердосплавное покрытие – промежуточный слой – основной металл» выполнен применением методов рентгеноструктурного использованием рентгеновского $\theta - \theta$ дифрактометра ARL X'TRA. Съемка дифракционных картин производилась по схеме Брэгга – Брентано с применением в качестве источника рентгеновского излучения длиннофокусной трубки с медным анодом мощностью 2,2 кВт. Дифракционные картины регистрировались в пошаговом режиме сканирования со временем накопления t= 3...10 с на точку и шагом $\Delta 2\theta = 0.05^{\circ}$ и 0.02° . Процессы, протекающие во время нагрева композиции «твердосплавная порошковая смесь – основной металл», изучались методом рентгенофазового анализа в процессе нагрева (in situ) на рентгеновском θ - 2θ дифрактометре BRUKER AXS D8 ADVANCE в Институте катализа СО РАН. Исследования образцов осуществляли в вакууме $1 \cdot 10^{-2}$ Па при температурах от 400 °C до 1200 °C. Прецизионное уточнение элементарных ячеек присутствующих фаз использованием дифрактометрии синхротронного излучения на втором канале ВЭПП-3 с энергией 2.2 ГэВ в Международном центре синхротронного и терагерцового излучения при Институте ядерной физики СО PAH.

Структурные исследования композиций проводили с использованием методов металлографического анализа (Carl Zeiss AxioObserver Alm) и растровой электронной микроскопии (Carl Zeiss EVO50 XVP). Растровый микроскоп, оснащенный микроанализатором EDS X-Act (Oxford Instruments) позволял определить распределение химических элементов в исследуемых композициях. Анализ химического состава материалов проводили на оптико-эмиссионном спектрометре ARL 3460.

Механические свойства (σ_B , $\sigma_{0,2}$, ψ) оценивались по ГОСТ 1497-73 на универсальной сервогидравлической установке «*Instron 3369*». Микротвердость исследуемых композиций измеряли на приборе модели *402MVD* (*Wolpert Group*).

Износостойкость полученных композиций определяли в соответствии с ГОСТ 17367-71 на специально созданной установке. В качестве абразивного материала применяли шлифовальную бумагу на основе карбида кремния зернистостью М63 по ГОСТ 3647-80.

В третьем разделе «Превращения, происходящие при спекании твердосплавной порошковой смеси на поверхности низкоуглеродистой стали» приведены результаты структурных исследований композиций, получаемых при оплавлении вольфрамокобальтовых твердосплавных порошковых смесей на сталях, и процессов, протекающих при нагреве исследуемых композиций.

В процессе структурных исследований выяснено, что спекание в вакуумной печи твердосплавной порошковой смеси ВК6, нанесенной на поверхность образцов из низкоуглеродистой стали 20, при 1380 °C в течение 5 – 10 с приводит к интенсивному взаимодействию порошковой смеси с

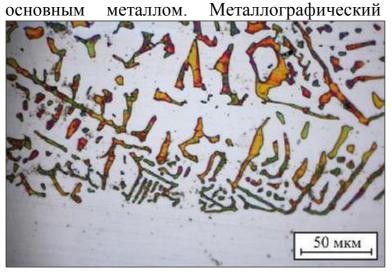


Рис. 1. Микроструктура переходной зоны спеченной композиции «твердосплавная смесь ВК6 – сталь 20».

рентгенофазовый анализ сформированных поверхностных слоев свидетельствует о их несоответствии строению твердых сплавов. Структура покрытия (рис. 1) представляет собой дендритпостроения на основе Fe-Fe₃W₃C, эвтектики которой отсутствует упрочняющая фаза WC, а матричный материал существенно отличается как ПО химическому составу, так и по объемной доле.

Исследование процессов, протекающих на стадии жидкофазного спекания в композиции «твердосплавная вольфрамокобальтовая порошковая смесь – стальная основа», проводилось посредством изучения продуктов взаимодействия компонентов порошковой смеси основного металла. И ряда температур нагрева композиции ДО температуры (ex situ) и изучением фазовых превращений, происходящих непосредственно в процессе нагрева (in situ).

В качестве модельного материала для исследования сохраняющихся при охлаждении до комнатной температуры продуктов взаимодействия, предварительно нагретых в вакууме композиций «твердосплавная вольфрамокобальтовая порошковая смесь — основной металл», использовалась смесь равных объемов порошка твердого сплава марки ВК6 и α — железа.

Анализировались исходные компоненты композиции, а также смеси порошков, нагретых со скоростями порядка 1...2 °C/мин в вакууме ($4 \cdot 10^{-3}$ Па) до 400 °C, 600 °C, 800 °C, 1000 °C и 1200 °C и медленно охлажденных (≈ 2 °C/мин) до комнатной температуры.

Средний характерный размер частиц твердосплавной порошковой смеси составляет 1...5 мкм. Частицы α – железа представляли собой пластинки

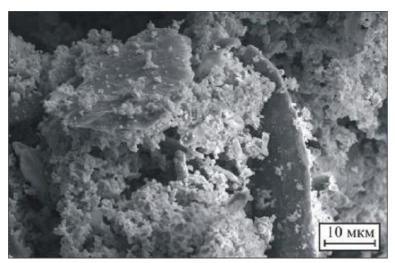


Рис. 2. Смесь порошков твердосплавной смеси марки ВК6 и α – железа при 25 °C.

толщиной 5...10 мкм и длиной до 100 мкм (рис. 2). Методом рентгенофазового анализа установлено, что кроме частиц кобальта И карбида вольфрама используемой порошковой смеси присутствует фаза W_2C , что свидетельствует о недостатке углерода в исходном порошке. Наличие фазы W_2C способствует образованию в процеснагрева исследуемых композиций хрупких сложных карбидов типа M_6C .

Предварительный нагрев исследуемой композиции до 600 °C приводит к появлению на рентгенограммах дифракционных пиков соответствующих β – кобальту, не оказывая существенного влияния на фазовый состав композиции. Рентгенограммы свидетельствуют о фазовой перекристаллизация и снижении концентрации дефектов кристаллической решетки кобальта в процессе нагрева исследуемой порошковой смеси в диапазоне температур 400...600 °C.

На рентгенограмме порошковой смеси, предварительно нагретой до

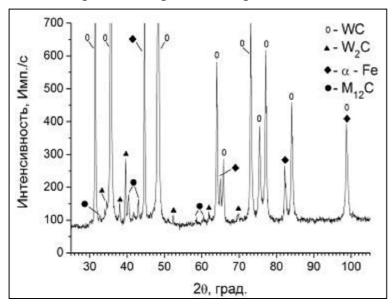


Рис. 3. Дифракционная картина порошковой смеси твердого сплава марки ВК6 и α – железа после нагрева до 800 °C.

800 °С, зафиксировано придифракционных сутствие пиков, соответствующих карбиду $M_{12}C$ (рис. 3). элементарной ячейке которого позиции атомов металла занявольфрама, ТЫ атомами кобальта и железа. Установлено, что в анализируемом материале отсутствуют фазы β-кобальта, αчто свидетельствует о протекании диапазоне температур 600...800 °C химических реакций с участием кобальта. Недостаток углерода, приводящий к образованию карбида $M_{12}C$ объясняется диффузией углерода в частицы железа, объемная доля которых велика в исследуемой композиции.

Повышение температуры нагрева порошковой смеси до 1000 °C приводит к полному исчезновению на рентгенограмме фазы W_2C и образованию карбида $M_{12}C$. Зафиксированное присутствие карбида типа M_6C свидетельствует о взаимодействии в диапазоне температур 800...1000 °C частиц карбида вольфрама (WC) как с железом, так и со сформированными карбидами $M_{12}C$, в результате которого происходит образование более богатого углеродом хрупкого карбида M_6C .

При рентгенофазовом анализе исследуемых композиций после нагрева в вакууме до температуры 1200 °C и охлаждения до комнатной температуры

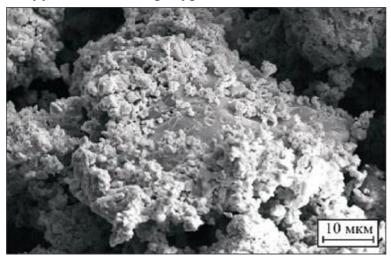


Рис.4. Смесь порошков твердосплавной смеси марки ВК6 и α – железа после нагрева до 1200 °C.

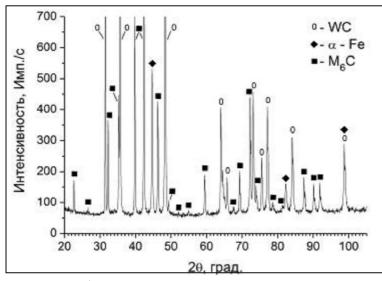


Рис. 5. Дифракционная картина порошковой смеси твердого сплава марки ВК6 и α – железа после нагрева до 1200 °C.

обнаружено увеличение объемной доли карбида M_6C . Отсутствие фазы $M_{12}C$ снижение интенсивностей рефлексов α железа WCкарбида вольфрама свидетельствуют о дальнейувеличении объемной шем доли сложного карбида M_6C (рис. 4, 5) за счет взаимодействия фаз $M_{12}C$, WC и Fe.

Изучение фазовых превращений, происходящих непосредственно в процессе нагрева (in situ) позволяет констатировать протекание химических реакций, продуккоторых существуют только в определенном диапазоне температур. Дифракционные картины исследуемых порошковых смесей (рис. 2) снимались при температурах от 400 °C до 1200 °C с целью определения параметров кристалллических ячеек фаз. Ha основании данных профильного анализа рентгеустановлены нограмм были величины дифракционных

углов рефлексов фаз, присутствующих в образцах, и методом наименьших квадратов рассчитывались параметры их элементарных ячеек. Период кристаллической решетки α – железа при 25 °C составляет 0,2865 нм.

Параметры фаз карбида вольфрама WC и W_2C также характеризуются стандартными значениями и отсутствием напряжений первого рода.

Выяснено, что при нагреве анализируемой системы до 400 °C фазовый состав образцов соответствует состоянию материала при 25 °C. Параметр элементарной ячейки α — железа составляет 0,2883 нм. Анализ изменения характеристик решетки частиц карбида вольфрама WC, позволил установить увеличение параметров с a = 0,2906 нм и c = 0,2838 при 25 °C до a = 0,2912 и c = 0,2845 при 400 °C. Это увеличение определяется исключительно нагревом, так как изменение параметров элементарных ячеек кристаллических составляющих находится в пределах расчетных c учетом коэффициентов термического линейного расширения.

В результате исследований было подтверждено формирование кобальта кубической модификации при нагреве в диапазоне 400...600 °C. Кроме того, в материале при температуре 600 °C сохраняются следующие составляющие: α – железо, карбиды вольфрама WC и W_2C . Параметры кристаллических фаз при нагреве материала существенно возрастают и при 600 °C составляют: для α – железа – 0,2891 нм, для карбида вольфрама WC a = 0,2915 нм и c = 0,2845 нм.

Результаты рентгеноструктурных исследований при нагреве до 800 °C с последующей выдержкой в течение 10 мин. перед повторной съемкой дифрактограмм свидетельствуют о наличии взаимодействия компонентов системы. В образцах отсутствует кобальт и сохраняются фазы α – железа, карбидов WC и W_2C . На дифрактограммах *in situ* присутствует значительное количество слабых рефлексов, соответствующих интерметаллическому оксиду $FeWO_4$, при этом установить присутствия сложных η – карбидов не удалось. В тоже время, учитывая, что в данной области температур активизируются процессы взаимодействия компонентов, можно сделать вывод о влиянии недостаточной степени разреженности атмосферы в результате чего, энергетически более предпочтительным является образование оксида $FeWO_4$, а не η – фазы, как в случае более глубокого вакуума при ex situ анализе.

Дальнейший нагрев образцов приводит к большей степени его окисления, о чем свидетельствуют рентгенограммы, снятые с образцов при температуре $1000~^{\circ}$ С и $1200~^{\circ}$ С. Установлено увеличение объемной доли оксида $FeWO_4$, о чем свидетельствует рост интенсивности соответствующих дифракционных пиков.

C целью исследования времени влияния минимизации высокотемпературного воздействия на характер диффузионного и химического взаимодействия компонентов твердосплавной смеси с материалом основы проведены исследования высокоскоростного нагрева композиций электронным лучом. Сокращение времени высокотемпературной обработки композиции способствует формированию неравновесной структуры и сокращению времени для протекания химических реакций с образованием карбидов типа M_6C , что позволяет предположить снижение его объемной доли. Исследовались образцы композиции «твердосплавная порошковая смесь стальная Материалом покрытия служила твердосплавная порошковая смесь Т15К6. В качестве материала основы использовались пластины ИЗ

подвергнутые предварительному насыщению бором. Насыщение основного металла бором позволяет снизить температуру появления жидкой фазы и способствует сохранению частиц карбида вольфрама.

Металлографический анализ оплавленных композиций свидетельствует о растворении частиц карбидной фазы. В поверхностных слоях композиций формируется дендритная структура на основе эвтектики $Fe-Fe_3W_3C$ с распределенными в ней частицами карбидов. Сформированное покрытие структурной неравномерностью: характеризуется на границе «покрытие – основной металл» наблюдаются локальные скопления карбидной фазы покрытия. Рентгенофазовым анализом в составе покрытия обнаружены частицы карбида титана TiC и фазы типа M_6C . Карбидная фаза WC в составе покрытия не обнаружена, основу оплавленного покрытия составляет а -Полученные данные железо. согласуются результатами микрорентгеноспектрального анализа.

На основании данных проведенной серии экспериментов было установлено, что применение источников высокоскоростного оплавления материала покрытия вызывает формирование значительной объемной доли жидкой фазы с растворенными в ней частицами упрочняющей фазы покрытия. Выделение хрупких карбидов M_6C протекает не в результате взаимодействия частиц порошковой смеси покрытия и основного металла (что наблюдается в случае печного нагрева), а в процессе охлаждения из жидкой фазы. Так как скорости охлаждения оплавленных слоев достаточно высоки, формирование карбида M_6C наблюдается в незначительном количестве.

Таким образом, существенное сокращение времени существования жидкой фазы в процессе электронно-лучевого спекания не позволяет исключить процессов взаимодействия компонентов покрытия и основного металла.

В четвертом разделе «Формирование твердосплавного покрытия на стальной основе с применением промежуточных слоев» приведены результаты исследования влияния барьерных слоев между твердосплавной вольфрамокобальтовой порошковой смесью и основным металлом на формирование структуры композиционных вольфрамокобаль-товых покрытий.

C целью сохранения частиц карбида вольфрама в объеме покрытия путем ограничения диффузии углерода из компонентов покрытия в основной металл исследовалось влияние барьерных слоев на структуру и свойства формируемых композиций. В качестве барьерных слоев использовались металлические (хром) и металлокерамические ($TiC-Ni;\ TiC-Co$) покрытия, а также слои, сформированные путем модификации поверхностного слоя основного металла азотом.

результате экспериментальных исследований не получило подтверждения предположение, что промежуточный слой металлического хрома будет способствовать ограничению взаимодействия частиц карбида вольфрама с железом основного металла. Согласно данным рентгенофазового сформированной композиции «вольфрамокобальтовое состав покрытие – промежуточный слой хрома – основной металл» входят следующие фазы: а-железо (как материала связки покрытия, так и основного металла); фаза

Рис. 6. Дендритные построения в покрытии, полученном спеканием твердосплавной смеси марки ВК6 на хромированной стали 20.

слоя,

оказывает

приложения внешних нагрузок.

металл,

поверхностного

существенное

не

но

 W_2C входящая состав твердосплавной смеси; сложный карбид M_6C содержащий железо, кобальт и хром. В покрытии имеются сферические частицы частицы (рис. 6), обладающие пластинчатой формой представляющие η-фазу, ДЛЯ которой не характерна жесткая стехиометрия химического состава.

поверхно-

азотом,

Насыщение

слоя

стали

стного

диффузию ограничивающим углерода покрытия в основной на структуру формируемого влияние сформировать композицию позволяет «твердосплавное покрытие – стальная основа», обладающую высоким уровнем конструктивной прочности. Наличие нитридов железа в составе покрытия изменяет характер взаимодействия компонентов системы, но не позволяет исключить формирование значительной объемной доли хрупких карбидов M_6C (рис. 7). В покрытии и переходной зоне образуются включения сферической формы, состоящие из нескольких фаз. Наличие сплошного слоя нитридов железа препятствует протеканию диффузионных и химических взаимодействий на границе раздела «покрытие – модифицированный основной металл». При спекании композиций формируется твердосплавный слой, некачественно связанный с материалом модифицированного основного металла, который отслаивается от поверхности образцов еще на стадии охлаждения без

Барьерные слои (рис. 8, 9), регулирующие диффузионные процессы в зоне формируемого покрытия и созданные на основе порошковых смесей TiC + Ni и TiC + Co, позволяют формировать твердосплавные слои на поверхности низкоуглеродистых сталей. При использовании никеля в порошковой смеси переходного слоя не удается избежать взаимодействия компонентов покрытия с основным металлом (рис. 8). В случае использования кобальта – формируется твердосплавный слой (рис. 9), имеющий структуру и свойства твердого сплава, практически отсутствует хрупкая фаза, как в покрытии, так и в переходной зоне.

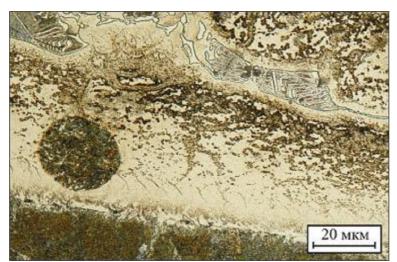


Рис. 7. Структура переходной зоны, сформированной спеканием смеси ВК6 на поверхности стали 20, содержащей нитриды железа.

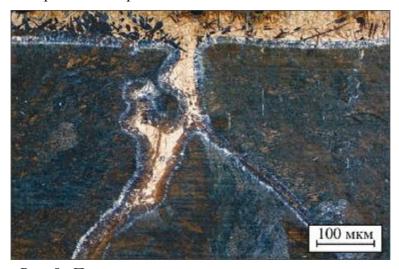


Рис. 8. Проплавы по границам зерен в композиции «(70 % TiC + 30 % Ni) — сталь 50».

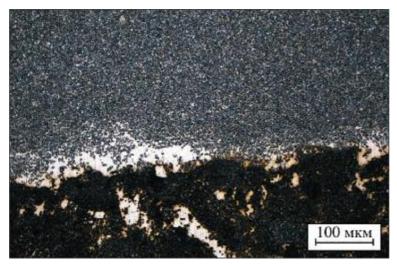


Рис. 9. Граница раздела покрытие — барьерный слой в спеченной композиции «ВК6 — (60 % TiC + 40 % Co) — сталь 20»

Микротвердость сформированного в композиции покрытия составляет $HV \approx 12000$ МПа.

B ПЯТОМ разделе «Механические свойства композиции «твердосплавное покрытие – барьерный слой - основной металл». Реализация результатов исследований» научных приведены результаты прочностных И эксплуатационных испытаний, а также технологические рекомендации, позволяющие формировать высококачественные твердосплавные покрытия на изделиях ИЗ низкоуглеродистых конструкционных сталей. Проведенные механические испытания образцов с сформиропокрытиями, ванными использоваcнием переходных порошковых слоев, свидетельоб отсутствии ствуют отрицательного влияния покрытий на прочностные свойства стальных изделий. Прочностные свойства образцов покрытиями ($\sigma_{0.2} = 200 \pm$ 50 МПа и $\sigma_{\rm B} = 500$ МПа для композиции основным металлом 50 сталь и никелем качестве связующего переходного слоя; $\sigma_{0.2}$ = $210 \pm 50 \text{ M}$ Па и $\sigma_{\rm B} = 550$ МПа лля композиции основным металлом сталь 50 и кобальтом в

качестве связующего переходного слоя) остаются на том же уровне, что и для образцов без покрытий ($\sigma_{0,2} = 210 \pm 50$ МПа и $\sigma_{\rm B} = 500$ МПа). Испытания покрытий при трении о закрепленные частицы абразива показали, что их износостойкость на 30 % выше значения для термообработанной стали Р6М5 и на 25 % ниже износостойкости спеченного вольфрамокобальтового твердого сплава ВК8.

При проведении исследований по заказам предприятий был выполнен ряд работ, направленных на разработку комплексных решений, позволяющих повысить конструктивную прочность изделий машиностроения. Испытания проводились в ОАО «МКК-Саянмрамор» и ОАО НПО «Сибсельмаш». Акты промышленных испытаний, приложенные к диссертационной работе, подтверждают высокую эффективность разработанных технических решений.

Результаты исследований используются в учебном процессе на кафедре «Материаловедение в машиностроении» Новосибирского государственного технического университета, что также подтверждено соответствующими актами.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- 1. Методами рентгенофазового анализа установлены последовательность и характер химических взаимодействий компонентов покрытия и основного металла, протекающих в процессе спекания композиции «твердосплавная порошковая смесь стальная основа». Выяснено, что началом взаимодействия элементов системы является образование сложного карбида $M_{12}C$ (η -фазы) в диапазоне температур 600...800 °C, сопровождающееся полным переходом кобальта твердосплавной смеси в состав η -фазы. Установлено, что повышение температуры композиции приводит к замене карбида $M_{12}C$ более богатой углеродом фазой M_6C и растворению карбидов WC твердосплавной смеси. Теоретически определены и экспериментально подтверждены возможные фазовые состояния покрытия в зависимости от степени его обезуглероживания в процессе спекания.
- 2. Изучены процессы жидкофазного спекания твердосплавных покрытий на сталях с использованием технологии вневакуумной электронно-лучевой обработки. Показано, что ускоренный нагрев позволяет сохранить высокодисперсную структуру исходного материала. Однако на стадии охлаждения, проходящей с невысокими скоростями, имеет место активное взаимодействие железа основного металла с карбидами порошковой смеси, способствующее охрупчиванию формируемого слоя.
- 3. Исследованы процессы взаимодействия твердосплавной порошковой смеси с промежуточным слоем, сформированным по технологии газового азотирования. Установлено, что наличие слоя нитридов железа существенно снижает интенсивность диффузионных процессов на границе раздела «покрытие основной металл». Фактором, ограничивающим применение в качестве барьерного слоя насыщенных азотом промежуточных слоев, является низкий уровень адгезионных свойств, обусловленный состоянием промежуточного слоя.

- 4. В качестве эффективного барьерного слоя, регулирующего диффузионные процессы в зоне формируемого покрытия, обосновано применение порошковой смеси, содержащей частицы карбида титана и кобальта. Показано, что оптимальное содержание кобальта в промежуточном слое составляет 40 % по массе. При меньшем его содержании снижаются адгезионные свойства покрытий, при большем происходит увеличение содержания хрупкого карбида. Композиция «твердосплавная смесь ВК6 (60 % ТіС + 40 % Со) сталь 20» характеризуется полным отсутствием хрупкой фазы М₆С и высоким комплексом механических свойств, близких по уровню к свойствам твердого сплава.
- 5. Разработаны технологические рекомендации по формированию на стальных изделиях твердосплавных вольфрамокобальтовых покрытий с развитой переходной зоной, использование которых позволяет:
 - исключить образование хрупких фаз в переходной зоне;
- обеспечить прочную связь покрытия с переходной зоной и переходной зоны с основным металлом;
- обеспечить прочностные свойства композиции близкие к основному материалу;
- обеспечить износостойкость поверхностных слоев с покрытиями на уровне, близком к свойствам спеченных твердых сплавов;
- 6. Результаты диссертационной работы используются в учебном процессе при чтении лекционных курсов и проведении лабораторного практикума при подготовке бакалавров и магистров по направлению «Новые материалы и технологии». Проведенные экспериментальные исследования поставленных промышленными задач, предприятиями решить комплексному обеспечению конструктивной прочности стальных изделий, эксплуатирующихся в условиях изнашивания и динамических нагрузок. Проведенные разработанных испытания технологических решений подтверждены актами промышленных испытаний.

Основные положения диссертации опубликованы в работах:

- 1. Влияние режимов предварительной химико-термической обработки на свойства стали, упрочненной покрытием на основе порошковой смеси WC-Co / В. Г. Буров, А. А. Батаев, А. Г. Тюрин, С. В. Буров, С. В. Веселов, И. А. Батаев // Ползуновский вестник. 2005. № 2, ч. 2. С. 4–9.
- 2. Повышение износостойкости поверхностей стальных деталей машин и инструментов формированием покрытий из твердого сплава / В. Г. Буров, А. А. Батаев, А. Г. Тюрин, С. В. Буров, С. В. Веселов, И. А. Батаев // Обработка металлов. 2005. № 2 (27). С. 22–23.
- 3. Получение твердосплавных покрытий с предварительной химикотермической обработкой основного металла / В. Г. Буров, А. Г. Тюрин, А. А. Батаев, С. В. Веселов, И. А. Батаев // Ползуновский альманах. − 2004. − № 4. − С. 120−122.
- 4. Влияние предварительного борирования стальной подложки на структуру композиционных покрытий / А. Г. Тюрин, В. Г. Буров, В. А. Батаев,

- С. В. Веселов // Сборник научных трудов НГТУ. 2002. № 4 (30). С. 101–106.
- 5. Влияние микролегирования на структуру поверхностного слоя стали при высокоэнергетическом воздействии / А. А. Батаев, А. М. Кручинин, В. Г. Буров, С. В. Веселов // Обработка металлов. 2005. № 3 (28). С. 20.
- 6. Веселов С. В. Влияние структуры и химического состава основного металла на геометрию поверхности раздела покрытие основа после жидкофазного спекания / С. В. Веселов, А. Г. Тюрин, В. Г. Буров // Современные техника и технологии : тр. 11 Междунар. науч.-практ. конф. студентов, аспирантов и молодых ученых. Томск, 2005. Т. 2. С. 20—22.
- 7. Повышение износостойкости стального инструмента твердосплавными покрытиями / В. Г. Буров, А. А. Батаев, А. Г. Тюрин, С. В. Буров, С. В. Веселов, И. А. Батаев // Станки и инструмент. -2006. N 27. C. 20-21.
- 8. Буров В. Г. Структурная наследственность при нагреве локальных объемов машиностроительных металлических материалов до жидкофазного состояния / В. Г. Буров, С. В. Веселов // Обработка металлов. − 2007. − № 4 (37). − С. 26–27.
- 9. Формирование напряженного состояния поверхностных слоев сплавов в результате импульсной ультразвуковой обработки / С. В. Веселов, Е. Д. Головин, И. А. Батаев, В. Г. Буров // Обработка металлов. − 2007. − № 4 (37). − С. 30−32.
- 10. Особенности усталостного разрушения поверхностно-упрочненных материалов / А. Г. Тюрин, Н. В. Плотникова, В. Г. Буров, С. В. Веселов, Е. Д. Головин // Научный вестник НГТУ. 2007. № 4 (29). С. 93–98.
- 11. Веселов С. В. Поверхностное легирование стальных изделий порошковой смесью Т15К6 / С. В. Веселов, В. Г. Буров, А. Г. Тюрин // Современные проблемы машиностроения: тр. 3 Междунар. науч.-техн. конф. Томск: Изд-во ТПУ, 2006. С. 78–81.
- 12. Веселов С. В. Использование промежуточного слоя из порошковой смеси «карбид титана никель» при нанесении твердосплавного покрытия на сталь / С. В. Веселов // Сборник трудов Всероссийской научно-практической конференции, посвященной 100-летию со дня рождения профессора Муханова И. И., Новосибирск, 16–17 окт. 2009 г. Новосибирск, 2009. С. 235–237.

Отпечатано в типографии Новосибирского государственного технического университета 630092, г. Новосибирск, пр. К. Маркса, 20 Тел./факс (383) 346-08-56 Формат 60 х 84 1/16. Объем 1,25 п.л. Тираж 100 экз. Заказ № 1642. Подписано в печать 19.11.2009